Civil Engineering Optional

Civil Engineering Optional

  1. How to prepare civil engineering optional for UPSC?

Civil engineering as an optional is recommended to be taken by only civil engineers. It is a subject which requires in depth knowledge of the subjects. If a student who did civil engineering opts for it then he/she can score better instead of those who are not from this background. It can prove to be a major disadvantage for those who are not from this subject.

Here below are given tips to prepare well for civil engineering optional:

  1. It is one of the major advantages for students who have studied the subject civil engineering for four years. Since your concepts are already crystal clear, this subject only requires brush up. A clear conceptual clarity will help you to ace through the exam. Most of the questions can be answered easily if you are thorough with the basics.
  2. It is one of the most scoring subjects. It doesn’t need rote memorization or learning of various facts and figures. It is a science based subject. If your basics are clear then you can easily score good marks. So make your basics strong and clear.
  3. Practice well. There are various diagrams that you will need to draw in order to explain the answer of the questions. Therefore practice a lot. Practice will enhance your answer writing habit and will help you to fetch more marks. Also practicing diagrams will also help you to draw them properly in the final exam.
  4. Another step is to explain the diagram properly. If you have explained it properly then it becomes easy for the examiner to understand it. Leave no part left where the examiner can deduct the marks. Explain all essential parts of the diagram well so that the diagram is res ipsa loquitur.
  5. The syllabus of civil engineering is vast. It requires consistency to cover entire syllabus before the exam. So it’s better to make a study plan. It will help you to get an idea as what to study and when to study. This will help you to cover whole syllabus in a systematic way covering all topics. But make sure to follow the study plan with full dedication and determination. In order to ace through the exam, it is necessary to cover everything leaving not a single topic behind.
  6. Next key aspect to keep in mind during preparation is to practice the mock test papers. Practicing mock test papers will give you a real time analysis through which you get an idea how final paper will come. This will also help to practice different types of questions. Variety of questions helps to solve all types of questions during the final exam.
  7. In addition to this make notes of the subject. Try to summarize the topic in notes format. It will help to understand the topic well. Also it will make concepts of the particular topic clearer and it will provide thorough understanding of the topic. Notes are proved to be beneficial and suggested by every topper of IAS exam. This will enhance your writing practice also. The more you practice, the more better you become.
  8. Also make notes from variety of reference books. It will help to understand the topic well and provide you will have variety to choose from. Also different books explain the same concept in different ways. So if your concepts are not clear from one book, you have variety to study same topic from other books.
  9. Revision is another most important step during preparation. Once you are done with notes making keep on revising them after regular intervals. Revision is the key to succeed. The more you revise the better understanding you get about the topic. The best thing that revision offers is that it will help you to absorb the things in a better manner. It will help in clear understanding of the topic.
  10. While doing preparation it is always better to figure out most important topics by solving previous year question papers. When you are aware about the most important areas start focusing on them. It is because most of the questions are asked from that particular topic. It is the right strategy in order to score well. After preparing these topics, prepare for those which are not so important so as to be on a safer side. In this way you can cover whole syllabus in a more systematic manner and chances of scoring well will be more. Also don’t skip any topic you never know questions might come from the topics which you didn’t covered.
  11. Civil engineering unlike other humanities subjects needs deeper understanding in order to explain the technical questions. You cannot simply memorize facts and write them down in final exam. For civil engineering focus on solving the questions within a limited time frame. Time management is most important thing during the exam. Try to solve questions by giving yourself a limited time. And then record the time which you took to attempt a question. Now when you solve it again then make sure you have taken less time than the earlier time you took to solve the same question.
  12. Another important aspect is starting your preparation early. As soon as you give the preliminary exams focus on preparing for the mains exam. Since the syllabus of civil engineering is vast. It requires proper time in order to cover entire syllabus. So give proper time to the subject in order to avoid last moment preparation and stress. If you will start your preparation late then it will be tough to cover whole syllabus.
  13. Most the time aspirants become worried whether they will be able to crack the exam and score good marks in the subject. But remember to stay confident. Confidence combined with perseverance will help you to ace the exam. During preparation phase don’t have a doubt on your abilities. Believe that you can do it and you will definitely come out with flying colors in the exam.


 1. Engineering Mechanics, Strength of Materials and Structural Analysis.

1.1 Engineering Mechanics: Units and Dimensions, SI Units, Vectors, Concept of Force, Concept of particle and rigid body. Concurrent, Non- Concurrent and parallel forces in a plane, moment of force-free body diagram, conditions of equilibrium, Principle of virtual work, equivalent force system. First and Second Moment of area, Mass moment of Inertia. Static Friction. Kinematics and Kinetics: Kinematics in cartesian Co-ordinates, motion under uniform and non-uniform acceleration, motion under gravity. Kinetics of particle: Momentum and Energy principles, the collision of elastic bodies, rotation of rigid bodies.

1.2 Strength of Materials: Simple Stress and Strain, Elastic constants, axially loaded compression members, Shear force and bending moment, the theory of simple bending, Shear Stress distribution across cross sections, Beams of uniform strength. Deflection of beams: Macaulay's method, Mohr’s Moment area method, Conjugate beam method, unit load method. Torsion of Shafts, Elastic stability of columns, Euler’s, Rankine’s and Secant formulae. 1.3 Structural Analysis: Castiglianio’s theorems I and II, unit load method, of consistent deformation, applied to beams and pin jointed trusses. Slope-deflection, moment distribution. Rolling loads and Influences lines: Influences lines for Shear Force and Bending moment at a section of a beam. Criteria for maximum shear force and bending Moment in beams traversed by a system of moving loads. Influences lines for simply supported plane pin jointed trusses. Arches: Three hinged, two hinged and fixed arches, rib shortening and temperature effects. Matrix methods of analysis: Force method and displacement method of analysis of indeterminate beams and rigid frames. Plastic Analysis of beams and frames: Theory of plastic bending, plastic analysis, statical method, Mechanism method. Unsymmetrical bending: Moment of inertia, a product of inertia, position of Neutral Axis and Principle axes, calculation of bending stresses.

2. Design of Structures: Steel, Concrete and Masonry Structures.

2.1 Structural Steel Design: Structural steel: Factors of safety and load factors. Riveted, bolted and welded joints and connections. Design of tension and compression members, beams of the built-up section, riveted and welded plate girders, gantry girders, stanchions with battens and lacings.

2.2 Design of Concrete and Masonry Structures: Concept of mix design. Reinforced Concrete: Working Stress and Limit State method of design— Recommendations of I. S. codes. Design of one way and two-way slabs, stair-case slabs, simple and continuous beams of rectangular, T and L sections. Compression members under direct load with or without eccentricity. Cantilever and Counter fort type retaining walls. Water tanks: Design requirements for Rectangular and circular tanks resting on the ground. Prestressed Concrete: Methods and systems of prestressing, anchorages, Analysis and design of sections for flexure based on working stress, loss of prestress. Design of brick masonry as per I. S. Codes

3. Fluid Mechanics, Open Channel Flow and Hydraulic Machines :

3.1 Fluid Mechanics: Fluid properties and their role in a fluid motion, fluid statics including forces acting on plane and curved surfaces. Kinematics and Dynamics of Fluid flow: Velocity and accelerations, streamlines, equation of continuity, irrotational and rotational flow, velocity potential and stream functions. Continuity, momentum, energy equation, Navier Stokes equation, Euler’s equation of motion, application to fluid flow problems, pipe flow, sluice gates, weirs.

3.2 Dimensional Analysis and Similitude: Buckingham’s Pi-theorem, dimensionless parameters.

3.3 Laminar Flow: Laminar flow between parallel, stationary and moving plates, flow through the tube.

3.4 Boundary layer: Laminar and turbulent boundary layer on a flat plate, laminar sub-layer, smooth and rough boundaries, drag and lift. Turbulent flow through pipes: Characteristics of turbulent flow, velocity distribution and variation of pipe friction factor, hydraulic grade line and total energy line.

3.5 Open Channel Flow: Uniform and non-uniform flows, momentum and energy correction factors, specific energy and specific force, critical depth, rapidly varied flow, hydraulic jump, gradually varied flow, classification of surface profiles, control section, step method of integration of varied flow equation.

3.6 Hydraulic Machines and Hydropower: Hydraulic turbines, types classification, Choice of turbines performance parameters, controls, characteristics, specific speed. Principles of hydropower development.

4. Geotechnical Engineering: Soil Type and Structure—gradation and particle size distribution—consistency limits. Water in soil—capillary and structural—effective stress and pore water pressure—permeability concept—filed and laboratory determination of permeability—Seepage pressure—quicksand conditions—Shear strength determination— Mohr Coulomb concept. Compaction of soil—Laboratory and file test. Compressibility and consolidation concept— consolidation theory—consolidation settlement analysis. Earth pressure theory and analysis for retaining walls, Application for sheet piles and Braced excavation. Bearing capacity of soil—approaches for analysis- Filed tests—settlement analysis— stability of slope of earth walk. Subsurface exploration of soils—methods Foundation—Type and selection criteria for foundation of structures—Design criteria for foundation—Analysis of the distribution of stress for footings and pile—pile group action—pile load test. Ground improvement techniques.


1. Construction Technology, Equipment, Planning and Management

1.1 Construction Technology Engineering Materials: Physical properties of construction materials concerning their use in construction—Stones, Bricks and Tiles; Lime, Cement, different types of Mortars and Concrete. Specific use of Ferro cement, fibre reinforced C. C., High strength concrete. Timber; Properties defects—common preservation treatments. Use and selection of materials for specific use like Low-Cost Housing, Mass Housing, High Rise Buildings.

1.2 Construction: Masonry principles using Brick, stone, Blocks— construction detailing and strength characteristics. Types of plastering, pointing, flooring, roofing and construction features. Common repairs in buildings. Principle of functional planning of building for residents and specific use—Building code provisions. Basic principles of detailed and approximate estimating—specification writing and rate analysis-principles of valuation of real property. Machinery for earthwork, concreting and their specific uses—Factors affecting selection of equipment—operating cost of equipment.

1.3 CONSTRUCTION PLANNING AND MANAGEMENT: Construction activity—schedules—an organization for the construction industry—Quality assurance principles. Use the Basic principle of the network—analysis in the form of CPM and PERT—their use in construction monitoring, Cost optimization and resource allocation. Basic principles of Economic analysis and methods. Project profitability—Basic principles of Boot approach to financial planning-simple toll fixation criteria.

2. Surveying and Transportation Engineering

2.1 Surveying: Common methods and instruments for distance and angle measurement for CE work—their use in plane table, traverse survey, levelling work, triangulation, contouring and topographical map. Basic principles of photogrammetry and remote sensing.

2.2 Railways Engineering: Permanent way— components, types and their function-Functions and Design constituents of turn and crossing— Necessity of geometric design of track—Design of station and yards.

 2.3 Highway Engineering: Principles of Highway alignments—classification and geometrical design elements and standards for Roads. Pavement structure for flexible and rigid pavements—Design principles and methodology of pavements. Typical construction methods and standards of materials for stabilized soil, WBM, Bituminous works and CC roads. Surface and sub-surface drainage arrangements for roads—culvert structures. Pavement distresses and strengthening by overlays. Traffic surveys and their application in traffic planning—Typical design features for channelized, intersection rotary etc.—signal designs—standard Traffic signs and markings.

3. Hydrology, Water Resources and Engineering :

3.1 Hydrology: Hydrological cycle, precipitation, evaporation, transpiration, infiltration, overland flow, hydrograph, flood frequency analyses, flood routing through a reservoir, channel flow routing—Muskingum method.

3.2 Ground Water flow Specific yield, storage coefficient, coefficient of permeability, confined and unconfined aquifers, aquifers, aquitards, radial flow into a well under confined and unconfined conditions.

3.3 Water Resources Engineering: Ground and surface water resources, single and multipurpose projects, the storage capacity of reservoirs, reservoir losses, reservoir sedimentation.

3.4 Irrigation Engineering : (i) Water requirements of crops: consumptive use, duty and delta, irrigation methods and their efficiencies. (ii) Canals: Distribution systems for canal irrigation, canal capacity, canal losses, alignment of main and distribution canals, most efficient section, lined canals, their design, regime theory, critical shear stress, bedload. (iii) Waterlogging: causes and control, salinity. (iv) Canal structures: Design of head regulators, canal falls, aqueducts, metering flumes and canal outlets. (v) Diversion headwork: Principles and design of weirs on permeable and impermeable foundation, Khosla’s theory, energy dissipation. (vi) Storage works: Types of dams, design, principles of rigid gravity stability analysis. (vii) Spillways: Spillway types, energy dissipation. (viii) River training: Objectives of river training, methods of river training.

4. Environmental Engineering

4.1 Water Supply: Predicting demand for water, impurities of water and their significance, physical, chemical and bacteriological analysis, waterborne diseases, standards for potable water.

4.2 Intake of Water: Water treatment: principles of coagulation, flocculation and sedimentation; slow-, rapid-, pressure-, filters; chlorination, softening, removal of taste, odour and salinity.

4.3 Sewerage Systems: Domestic and industrial wastes, storm sewage— separate and combined systems, flow through sewers, design of sewers.

4.4 Sewage Characterisation: BOD, COD, solids, dissolved oxygen, nitrogen and TOC. Standards of disposal in normal watercourse and on land.

4.5 Sewage Treatment: Working principles, units, chambers, sedimentation tank, trickling filters, oxidation ponds, activated sludge process, septic tank, disposal of sludge, recycling of wastewater.

4.6 Solid waste: Collection and disposal in rural and urban contexts, management of long-term ill-effects.

5. Environmental pollution: Sustainable development. Radioactive wastes and disposal. Environmental impact assessment for thermal power plants, mines, river valley projects. Air pollution. Pollution control acts.